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ABSTRACT

A formulation of the problem of detecting outliers as an empirical

Bayes problem is studied . In so doing what arises is a non-standard

empirical Bayes problem for which the notion of average risk asymptotic

optimality ( a . r .  a .o . )  of procedures is defined. Some general theorems

giving sufficient cond itions for a .r . a .o .  procedures are developed. These

general results are then used in various formulations of the outlier problem

for underlying normal distributions to give a .r .a .o .  empirical Ba yes

procedures. Rates of convergence results are also given using the methods

of Johns and Van Ryzln (197 1 , 1972) .
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AN EMPIRICAL BAYES APPROACH TO OUTLIERS

Enrique de Alba and J . Van Ryzin 1

1. Introduction.

It is not uncommon to find samples in which some of the observations

appear suspiciously far away from the main group. Such observations

are often called outliers.

The problem appears in the literature as early as 1838 , when Bessel

mentioned the simple rule of not rejecting any observations . There is a

large number of results on the topic , which consider the causes of outliers

and present different  solutions. There are several articles which include

excellent historical reviews of the work done in this area. See for example

de Alba (1974) ,  Ride r ( 1933),  Ferguson (i961a , 196 1b) and Guttman and

Smith ( 1969).

The outlier problem actually presents two aspects: i) identify any

particular observation (or observations) which come from a distribution

other than the one which has been assumed to explain the main bod y of the

observations: spuriou s observations , ii) obtain a procedure for the analysis of

the data which is not very much affected (if at all) by the presence of

spurious observations or by the rejection of non-spurious observations .

Thi s paper only considers the first aspect of the problem.

Researc h of this author was sponsored In part by DHEW , PFIS, National Institute s
of Health under Grant 5 R Ol  CA 18332-02 and by the United States Army under
Contract No. DAAG29-75-C-0024.
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Three basic approache s have been used: the premium-protection ,

the significance test and the decision theoretic approache s (see de Alba (19 74)

and Guttman and Smith ( 1969)). We shall use the empirical Bayes (e. B . )

approach of Robbins (1964).  Our solution can be c’assifled under the

decision theoretic approach.

We shall use the following model. Out of a sample of size n , ( n - k )

of the random variables are normal with mean ~i and variance 0.~~~~ wht l e

the remaining m r. v. ‘s, also normal , have the same mean ~i. but their

variance is X . 0.
2
, (x . > 1), where I ranges over the subscripts of the

m r .v .  ‘s. If we let the symbol “... ~ mean “is dis tributed as ”, then

x . , x . , .. . , x . N(~ , ff
2 )

1 2 ( n — k )  ( 1.1)
2N(~ , x~ 0. ), n — k -

~
- 1, . . .  , n

where (i 1, j 2, . . . , 1 )  is some permutation of the subscripts (1, 2 , . . . , n)

and is the multiple of the variance of the non-spurious observations

and ~~~~ is the variance of spurious observation i . .

2. Empirical Baye s Terminolog y.

We begin by stating the basic elements of decision theory which we

will be using :

I) The parameter space E.

ii) A set A of possible actions.

-2—



i i i )  A loss function L(a , X )  ~ 0 , defined on A X (~. . For any point
p

(a , x) c A X C , L(a , x ) < ~ is the loss that results  when 0 c

is the true value of the parameter and we take the action a c A.

iv) The sample space Z which is taken to be a f in i te  dimensional

Euclidean space . For each X ~ ( there is defined a c. d. f .

F~ (x).

We shall be working with behavioral decision rules. A behavioral

decision rule , t(x),  is a f unction which gives , for each x in the sample

space , a pro L~ b 1lity di stribution over A. We thus have the average

los s when using t(x) given by

L(t(x), X) = EL( Z, X)

where the expectation on Z is taken with respect to t (x).  Furtner , the

risk function Is defined as

r(t , X )  = E~ L(t(X) , X )

where E0 denotes the expectation of X when the value of the para-

meter is x .  The minimum Bayes risk with respect to prior distribution

G on X , or Bayes envelope functional , is:

r (G) = r *(t G, G) inf r *(t , G) = inf f  r(t , x ) d G(x)

where tG Is a Baye s rule.

Suppose we are confronted with the same decision problem repeatedly

and independently. Let (A 1, X1), (A 2 , X2), . . . , (A , Xn ) be a sequence

of mutually independent pairs of random variables , where

— 3—



A1, A2, .. ., A all have an unknown common (prior) distribution G

defined on and the conditional distribution of X given ‘~r =

i s specified by the p . d . f .  f
~

(x) (dF~/d-r ) (x),  r = 1, . . .  , n assuming

that the family {F~ : X C E ) is dominated by a 0.-finite measure

on Z.

The empirical Baye s approach constructs a decision procedure

concerning A n+j  ( unobservable), based on the values that have been

observed for Xi , . . . , X +j , i .e. , using x1, x2 , . . . , x~~1. The

(A1, .. . , ~~~ remain unobservable throughout. For a decision about

A , a function t (x ), whose form depends on the valuesn+l n n+ 1

x1, . . . , xn is used . An e. B. decision procedure Is a sequence

T = { t }  of such functions.

Robb ins (1963 , 1964) defined a sequence T = { t }  as being

asymptotically optimal ( a . o . )  relative to G if

lirn r *(t , G) = r(G)

He also give s conditions under which a rule is a. o-

A question that arises when dealing with empirical Bayes decision

rules is “how fast , relative to n , does r *(t~ , G) converge to the

minimum risk ?“. Johns and Van Ryzin (1971, 1972) have studied the problem

arid given rates in different situations. We shall also consider the

rate problem in relation to our rules for testing outliers .
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3. An Extension of Empirical Bayes Procedure s.

The results presented for testing outliers are based on a non-standard

empirical Bayes framework which can be described as follows. Let

(X1, A1), ( X2, 
~~~~~~~~~ 

. . . , (X , A )  be mutually independent pairs of random

variables , Xr(r = 1, . . . , n) is defined on a sample space i~ and

= 1, - . . , n) on a parameter space ê. The A r~ 
r = 1, . . . , n , are

assumed to have a common prior distribution G on e and the conditional

density of X given that A = x Is f
~

(x ), r = 1, . . . , n , w. r . t. a

0.-finite measure T .

We now define the empirical Baye s rule for the rth problem ,

r = l , . . . , n , denoted t~~ ( X ) .  Let tn (x) t ( X 1, . . . , X ;x) . Define

= (X1, . . . , Xr 1, x , X~~1, . . . , X )

and

• t~~ (x) = t ( X 1, . . X 1, x, X +1, .. ., X ;x) = t ( X (x);x)

so that the form of the r th decision rule depends on X (x) . Note

) = t (X ) since t~’~(x) differs from t (x) in that the first has

a fixed value of x in th: place of the rth r:ndom variable .

This particular use of the e. B. metho d is non-standard . We have

two di fferences:

I) We are not actually working with a sequential decision procedure ,

and

ii) We do not use a decision rule whose form depends only on the

first (n—I )  observations.
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If Is obtained for each r = 1, - . . , ri and we denote its

risk relative to G by r *(t~~ , G), we obtain an n-vector ,

t = {t~
4(x ); r = 1, . . . , n} (or t ~t~’~( x ) } )  of decision functions which

we shall call an e. B. decision procedure . In our application such a procedure

will give us a rule to determine whether each X , r = 1, . . . , n , is spurious

or not. We make the fol lowing definition.

DEFINITION 1. Let (X1, A1), . . ., (X , An ) be mutually independent pairs

of random variable s and t~~ (x) = tn (
~~.

(x);x), r = 1, . . - , n. If

r*(~~ , G) = (1/n ) 
r~ l 

r*(t~~ , G) r(G) as n (3.1)

then the e. B. procedure t = {t~~ ( X ) }  is said to be “average risk

asymptotically optimal” (a. r. a. o .) relative to G.

The symbol -P- P will be used to denote convergence in probability. We now

state and prove the following lemma in the case where e = {o~, 81) and A = {a
~

, a~}..

A Bayes rule against G in this case can be written as (see

Robbins (1964)) ,

( 1 if
tG(x) = ( 3 . 2 )

0 ~

where t(x) = Pr{taking action a , Ix = x) and

= f  {L(a01 X ) - L(a j , X ) ) f
~

(x)dG(x) - (3. 3)

LEM MA 1. Let ..~~(x) = ~~ (X;x) be such that as n —~~~0O~~ ~~ (x) - P —

a.e.  ( T ) . Define
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10 if A~’~( )  > 0
~

(r)
(X) =~~ n (3 . 4 )

n 
~~ ~~~~~ <

~~ ,

where

r) ( )  = ~~~~(x); x )

Let

r’(L~, G) (1/n) 
r = 1 

r *(t~~ , G ) .

Then , for any 0 < d 1 ~ 1, 0 < d 2 1 1, and each fixed r ,

r *(t~~ , G) - r(G) < 2
d1 

~ ‘~~G~~ 
,
1-d 1 

L I ~~
(r) ( )  - ~~ (x) 

d1 
+

d l -d d
2 2 j  2 E I ~~~(x) - 

~~~~~ 
2d~ ( x ) ,  r =

E denotes the expectation under X~. . . . ,X .

(~ ) * (r)PROOF. From the defini t ion of t ~x , iri ~ r (~ , G) we have
n n

r *(t ~~ , G) - r(G) = ~~~~~~~~~~~~~~ ~~~~ - tj x ) J dT ( x )  ( 3 . 5)

with tG( x) and AG(x) as in (3 .  ~) ~i n t  ( 3 .  3). But fro m ( 3 . 2 )  and (3.  4) ,

we see that

j t~~(x) — tG(x) 
~ 

~~~ 
~~(r) ( )  — 

~ G(x) I 2: 
~~~~~

0 otherwise.

and hence

E f t~~ (x) - tG(x) I < Pr{ I~~~~(x) - A
c

(x) I >  [ I  } . ( 3 . 6 )

This result and using Fubini ’s theorem In (3. 5) give s

G) - r(G) < f  IA G(x) (Pr { I i~~ (x) - ~~~(x) I ~ ‘~G~~ 
I /2}dT (x)

+ .1 I~ G(x) I Pt { l~ fl
(x) - 

~ G(x) I 2: l~~G( x ) I / 2 ) d T ( x )

—7 —



Markov ’s inequality applied to the first term with 0 < d 1 < 1  and to the

second with 0 < d 2 < 1 yields the required result.

Q. E. D.

The following result is an extension of Corollary 1. 2 of Robbins (1964),

to a . r . a . o .  decision rules.

THEOREM 1. Let (X1, A 1), . . . , (X , A )  be mutually independent pairs

of random variables. Let A = {a 0, a1), let G be su ch that

f L(a1,X)dG(X) <~~~~~~, 
i = 0, 1 .  (3 . 7)

Let

(0 if A~~~ (X) > 0
t (r) (x) =~~ 

n
n 

L’ if

where

= A ( X (x);x)

Assume that

= 
~~~l~~~’ m~~~’~~ ’ m � 1

where the following conditions are true:

a) Q(yi , . .. , y
m ;x) is continuous in every y . ,  j = l,...,m . a.e. (T).

b) ~~(~ 1(x )) - ~
(
~

) c~ (x , X2, - . . , X )  — 4 ( X 1, - . . , X )  -F— 0 as

n — ~~~~, 
j = 1, ... , m , a.e.  (T).

c) ~ ,(X 1, . , X )  = ~~(X , . •~~
Xv )

~ 
j = 1, . . .  , m , where (v 1, . . ~~

V
n

)

is any j~~rmutation of the subscripts (1, . . .  , n), i. e. the ~~‘s

are symmetric in (X1, . .  , Xn )•

d) ~~ (x) -F— AG
(X) as n -

~~~~~~~~, a . e .  (i r ) .
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Then

1n {t~~ (X )} Is a . r . a . o.

PROOF. First  note that for r = I

~~~ (x) Q(c~1(_X1(x)) ,  . .., ~~ (X 1
(x));x) =

{Q(~ 1(X1(x)) , - . - , ~~~(X 1
(x)) ;x)  — 

Q( cb
1
(X) , . . . , ~~~~~~~~~ * ~~~(x)

Now condit ions a) and b) imply that the term in brackets converges to

zero in probability . Thus , with condition d), as n —. oo , a.e .  (T )

-P— A G(x),  x fixed.

From Equation (3.  6), we have

r *(t~~ , G) - r(G) 
~ 

f 
~~~~~~ 

IP r { I~~~(x) - AG(x) I 
~ ~~~~~~ 

L) dT(x) ,

so that

sup {r *(t~~ , G) - r(G) } I f  
~~~~~~ 

sup {Pr {~~~~~(x) - ~~~~~~~ G
I
~~~~~

T
~~~~~

1< r < n  l < r < n

From the s~’mmet ry of the 4~ ’s (condition (c)) we get

Pr { j~~~(~) - 

~ G~~~~
> I~~G

(x) I } Pr{ I~~~(x) - ‘~G~~~~
> 

~~~~ ~~

for r = 1, . .  . , n. Hence

sup {r *(t~~, G) - r(G) } I f  kG~~
) Ipr ~ I~~~ (x) - A G(x) I 

~ ~~G~~~
1 }dT(x) .

1< r<  n

Now

fA G
(x)I Pr{ I

~~~~
(X) _ 

~G
(x)I

~~ ~~~~~~~ 
‘~~G~~~

1

and ( 3 . 7 )  implies 
~G

(x) is integrable, since as n — 
~~~~, ~~~~~x) ~~~~~~

Implies
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!
~~G

(x)i
~~

{ 1 (x) - 
~~~~~~ ~ I~ G( x ) l )  — 0  as fl ~~~~, cl .e. ( T ) ,

we c~n apply the Dominated Convergence Theorem to get

sup {r*(t~~, G) - r (G) } — 0 , as n —

1< r< ii

Since

(i/n) ~ {r*(t~~, G) - r(G)) < su p {r
*(t~~, G) - r (G) } ,

r = 1  1< r < n

we have

r*(t ,G) - r(G) — 0 , as n —~~~~~, so that is a.r.a.o.

Q.E .D.

It i s convenient to note at this point that we only have to verify

the condit ions of Theore m 1 in order to prove a. r. a. o. The following

lem ma will prove useful for deriving results on rates of convergence.

LE M MA ~? .  If ~~ (x) = ~~~(X;x) is symmetric in (X
1, 

. . . , X )  and

G) - r(G) = 0(n S), for some s > 0

then

r *(t , G) - r(G) = O(n S)

The proof follow s from (3 .6 )  and the symmetry of .~~ ( x) .

4 . An e. B. Test for Outliers.

Consider n Independent random variables X1, . . . , X , wh ere

given Ar = x , Xr is normally distributed with mean ~ and va riance
2(1 r = l, . . . , n , i .e .

X~~ N(~ , a 2X ) ,  r = 1, .  .. , n . ( -1. 1)

-
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.~ and o are assumed known and A has a prior d i s t r ibu t ionr

G = {p, 1 — p) on ~ {l , x 0 }, defined as follows

Pr {A = 1) G(l~ ) - G( 1) = p

Pr{A r x 0} C(x~~) - G(x 0 ) = 1 - p, 0 < p < 1

fo r some > 1, known , and r = 1, . .  . ,  n. We can use empi rical  Bayes

methods to test the null hypothesis , for each r , r = 1, . . . , n ,

H0 :X ~~ N(~i, a 2 ), vs .

H1 : Xr N(~ , X 00.2 )

The procedure is given in the following theorem.

THEOREM 2. Let X , r = 1, . .  ., n be defi ned as above , A = {a 0, a1 }

whe re the action a . is defi ned as a . = “decide in favor of H . “ ,
1 1

i 0, 1 and the loss function , be such that

L(a0,l) = L(a 1, X 0) = 0

Furthermore , defin e A~ (x) as

~~ (x) (1 — 
~~~

) L(a 0, x~
)f

~ 
(x) — p L(a 1, l)f 1(x)

0
where f

~
( x) is the p . d . f .  of x obtained when A r = X~X 1 or X c~

If ~ p(~ ) i s a  consistent estimator for p, sym metric in X, and a .e .  ( T )

p(X 1(x)) - p(X) -P — 0, as n •

then the e. B. decision rule

l o u  ~~ ( X ) > 0
t ( X )  = 

n r ( 4 . 2 )
Li otherwise,

r = I , . . .  ,n, is a.r.a.o. for testing H0 vs. H1. U

— P 1 1 —



Under H0, X has the p . d . f .

f i (Xr ) = (l/0.~J~~)exP {_ (x~ - 
2
/2~

2 } (4. 3)

and under H1,

f
~~

(X r) = ( 1/0. \I
~

TX 0)exp {_ (x
r ~~

2
~/2>t o0.2 ) , r = 1, . .  . , n . (4 .4)

The proof of the theorem is a direct consequence of Theorem 1 for m

One particular case of a consistent (symmetric) estimator p is given by

p = (1/n) 
~ 

~0( X ) ,  (4. 5)

where

2 2
0. x -(X  - p.)

= 
0 r

0. (x 0 1)

A question that arises when estimating G is that of identIfiability.

Maritz (1970) gives results on identifiability for location parameters

under normality. A result for scale parameters can be found In de Mba (1974).

As pointed out earlier , the usefulness of e. B. procedures in

statistical applications depends on how fast the Bayes risk of each

successive decision problem approaches the minimum Baye s risk. In

relation to Theorem 2 we have the following result.

THEOREM 3. Assume the conditions of Theore m 2 hold. Let

= (1/n) 
r = I  

~0( x ) , where = {0. 2X 0
_ (X

r 
- p.)2 )/0.2 (X 0~~ ), then

0 ~~r (~~ , G) - r(G) = O(n )

— 12—



The proof is straightforward and follows from applying Lemma 1, with

= I and d 2 = 1, and from Lemma 2 , (s ee de Mba (1974) for detai ls) .

In this section we have introduced our approach to the outlier

problem, applying it to a particular case. In the following sections we

will give some extensions.

5. Small Versus Large Outliers.

Suppose we are interested in a test for “ small outliers ” against

“large outliers ” , i .e.

H0:X < X 0 
for some X 0 > l , vs.

(5.1)
H1: X >

where x > 1. The “largeness ” criterion Is determined by the value of X~~.

A reasonable loss function for this test is given by

(o X I X
L(a ,x) = ( 0 ( 5 . 2 )

- ~~~ ~‘ >

10 X > X 0
L(a 1, X ) = ç ( 5 .3 )

Li/x — 1/X 0, X <

Define now

b( X ) = L(a 0, X) - L(a 1, X)

• so that

= I

with fG(x ) = f  f~
(x)dG(X) and f~~(x) is obtained from the definition of

I G
(x), by differentiating under the integral sign. The Bayes rule is:

— 13-



10 if AG~~ = (l/\ O )f G(x) + {ff 2/(x - p .))  f~~( x ) 2: 0
tG(x) = c ~

LI otherwise -

The e. B. rule may be derived by getting consistent estimators for f G(x)

and f~~(x) .  We have the following theorem .

THEOREM 4. Let X , . .  - , X be independent random variables defined1 n
as in (4 .1 ) ,  the parameter space C. = [l ,~~) and let G be any c . d . f .

defined on ~
- . The action space is A = {a0, a1) , H0 and H1 are

given by (5. 1) and the loss function by ( 5 .2 ) - ( s . 3 ) .  Let f (x) = f (X;x)

and f ’ (x) = P (X;x) be any consistent estimators of f G(x) and f~~(x)

respectively, for all x, symmetric in X, and such that

f n (_X1(x) ;x) — f~(~ ;x) — F-. 0 , for all x ( 5 . 5)

- f ’ (X;x) —F- . 0 , for all x (5 . 6)

as n - . oo , and

= (lA 0)f (x) + {cr 2/(x -

Then

(0 If A ( X ) > o
t~ (X ) = n r ( 5 . 7 )r LI otherwise ,

r = I , . . .  , n , is a . r . a .o .  relative to G.

The proof follow s from Theorem I with m = 2.

A particular choice of f n (X) and f~ (x) is given by Johns and

Van Ryz ln (1972). With thi s particular choice , conditions (5 . 5) and ( s .6 )  are

satisfied ( see de Mba (1974). ) Theorem 3 of Johns and Van Ryzin (1972) will

be very useful for proving our rate theorems.

— 14-



We now define = K 1(u1)[ K
2 

= x2(u2) as the class of all real-

valued measurable functions on the real line sat isfying the conditions

of the definition of f (x)[ f ’ (x) ] given in Johns and Van Ryzin ( 1972).

Also note that since we are assuming p. and 0. are known, in

(4. 1) we can de fine y z (x - p.)
2/20.2 and restate our problem for the

density

~ (1/~’~~~~)exp{-y/X }, y > O ,  X > 1
f (y) = (  ( 5 . 8 )

Lo elsewhere

We can now prove the following rate theorem.

THEOREM 5. Let Y. = ( X . - p.)
2/20.2 , i = 1, . . . , n , where the X . are

independent random variables defined as in (4 .1) .  Let f (y) and f ’ ( y )

be estimates of f(y) = f f
~
(Y)dG(X) and its derivative given as in [7

with tn (Y ) defi ned by ( 5 . 7 )  for A (y) = (x~~ + (Zy)  1)f (y) + f’(y).

For any I 2 , If we choose h = O(n (2 1
~~~) and K . c K . in defining

f (y) and f ’ ( y ) such that

f  u~~~~
1K .(u)du = 0 for = 1, . . . , I-I , i = 1, 2 , ( 5 . 9 )

and if for some d , 0 < d  < l/ (2 1 + 3)

E(~~1+t) (2~~~ ) <°° , for some t > 0 , ( 5 .10)

then

rft , G) - r(G) = 0(~~- d ( 1 - I ) / ( 2 1 + l) )

PROOF. If in (5 .8 )  we let 8 = l/X , then

— 15—



l(~~/\~~)exp{-y0 } for y > 0 , 0 < 0 1
f0
(y) =

~ otherwise

Furthermore , if

t3(0) = ~~~ and h(y) = l/’~.I~~ (5 . 11)

then f (y)  fails into the theory for Case I of Johns and Van Ryzin ( 1972). Now

the loss f unction ( 5 . 2 ) - ( S .3) may be written in terms of 0 as

10
L(a 0, 0) (

L00 -o O < O ~

and

(0 0 < 0 ~
L(a 1, 0) = (

Le -e 0 0 > 0 0 .

The hypothesis to be tested will be H~ : 0 2: 0
~ 

vs. H~: 0 < 00
.

From Lemma 1 wIth d1 = d
2 

d we see that

r *(t
(1)

, G) - r(G) < 2
d j  I A G(Y) ~l_ d~~j~~(l) (y) - A (y) i ddy +

(5.12)

2
d 

~~ 
J A ~~(y) I~~~EiA (y) 

- A~~(y) I
dd y ,

where AG(y) = (X 0
1 

+ (2y ) 1)f(y)  + f ’(y) .

Consider the second term on the right han d side of (5 .12) .  We now verify

the conditions of Theore m 3 In [7 J  to obtain the rate of convergence for this term .

Note that fro m (5.11), we have

h~~~(y) = (1/~Jw)(-I/2)~ (l (1+2) - (1+4). . .  - (I+2I))y (2l
~~ h/2 . (5.13)

Hence h~’~(y ) exists and Is continuous for any 1 � 1. From this and
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Lemma 2 in Johns and Van Ryzin (1972) we know that f~~~(y) exists

and is continuous for any £ .2: 1 and y > 0. Furthermore , since 0

is defi ned on (0 , 1], E0 <~~~ is always true as required by their Theorem 3.

We now verify (3.3) of their Theorem 3. Note that

f~~)
(y ) = (-i)1f 0(y) 

~~~~ 

a .(e + I/2y)~y~~~ (5. 14)

where the a ’s are non-negative constants. Throughout , when writing

the expression for f (r) (y) the summation will be assumed to be from

= I to j = £ unless stated otherwise. f0(y) is a decreasing function

of y, for y > 0. Hence

f ( y ) = sup + t) = (5.15)
O<t< c

for all y > U and C > 0. From this we get , usIng 0 < 0  < 1,

q(fl (y) = sup j f ~~~(y + t ) I = sup f ~f~~) (y + t) I dG(0)
C O < t < ~~

= f  l f ~~~(y) IdG(0) = I ( 1) V f  ~~~~ ~ a .(0 + l/2y)~y~ ‘dG(8) = J f ~~) (y)

< f  f
9(y) ~ a.(l + 1/2y)~y~~~dG(0) = ~~ a,(1 + l/2y)~ y~~~

1
, (5 .16)

where 4~~(y) is obtained by repeated differentiation under the integral

sign. Also

IA~ (y) I = I e Ø f~ (~) — f  9f 9(y)dG( 0) I < (e~ + l)f~ (~) . (5.17 )

By (5.16) and ( 5 .17)

f  1A G(Y) ~l_ d
{q(I ) (y) }d~ y < ( 1  + e0)~~

1E(~~ a’(2Y + 1) J~
_
~ ) d (5.18)
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where a * = a/2 3 and the expectation is taken with respect to

Repeated application of the c -inequali ty yields

(1 + 00)~~~ E~~ a~~2Y + 1) J~~_ 1
} d 

< ( 1  + 0)
l_d 

~ b . E I ( 2 Y + l)~ Y
1 d 

( 5 . 1 9 )

* 1—iwhere b . = a . cd, = I , - . . , I - 1 and b1 = a l cd Now by the

Holder inequality

E 1( 2 Y  + j ) J y I j d 
< {E(2 Y + l) J )d {EY I d/ (1 d)

)
1 d

The first factor on the right is always finite so we need only verify that

the second factor Is also finite . By Fubini ’s theorem

E{Y~~~~~~~~ } = f
1 
{e
Id/(l-d)/r(l/z)} {f (O/y )l/2~

I d/(1~
d) exp{ -Oy }dy)dG(0) .

Hence , provided

1/2 — td/(1—d ) > 0 , ( 5 .  20)

the expectation will be finite - But this require s d < 1/(ZI + 1) and we

have as a condition in the theorem that d < l/(2I + 3). Hence condition

(3. 3) of Theorem 3 in Johns and Van Ryzin (1972) holds.

We next verify (3.4) of their Theorem 3. From (5.16), (5.17) and

v( y) = h ’(y)/h (y) -l/2y we get

f  L A G~~ 1
l~d{ Iv(y) q

(L)(y)} d~y < (1 + e )l d E{~~ a~(l +

where s = I + 1. Hence we can apply the same argument from (5.19 ) to ( 5 .  20)

with s instead of I and the condition will be tru e provided

1/2 — sd/(l — d) = 1/2 — (1 + l)d/(l — d) > 0

which requires d < l/(21 + 3). Hence , condition (3 .4 )  in Johns and

Van Ryztn (1972) Is satisfied .
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To verify condition ( 3 . 2 )  of their theorem we use v(y) = -l/Zy, (5 .15)

and (5.17) to obtain

f  IA~ (y) I
l_d

l v(y I~~f* y~~
I
~
/f2dy <

+ 0 ) 1_d
{f ~~d {f (y) }i d/2

dy + f  y
_d

{f (y) ) l_d/2 dy} =

+ 0 )
id

[p ~ +

where A1 and A
11 are defined in an obvious manner.  Using the fact

tha t ~~? I and applying the H~lder inequality we get , for t > 0 ,

A11 < f  {f (y) )
l d/2dy <  {f y (l+t) dy} d/2

{f y i
f (y)dy }l d/2 ( 5 . 2 1)

with

= (1 + t)d/( 2 — d)

Clearly the first factor on the right is finite . Finiteness of the second

factor follows from the definition of 1G~~~’ Fub in i ’ s Theorem, the use of

Laplace transforms and application of condition (5.10).

A
1 can be shown to be finite by noting that

~ 1 
y~df (Y) I d/2 

< ~-1/2 / y(2_ d)/4
dy

Hence condition (3 .2 )  in Johns and Van Ryzin (1972) holds.

Condition (3.1) of Johns and Van Ryzin (1972) can be shown to hold

by arguments which are essentially the same as those used so far.

This completes the proof that under certain conditions and if the

consistent estimators of and f~~(y) are used as given in
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Johns and Van Ryz in ( 1972), then the rate of convergence of the second
— ( I—1 )d / (zI+l )te rm in ( 5 .12)  is O(n ) .  We shall now give the rate of

convergence of the first term in (5 . 12) .

Fro m the definition of .~~~~y), f (y) and f’ ( y) we have
) (y) = (0 0 + 1/2y)f U) (y) + f~~)’(y)

where

f (l) (y) = (1/nh ) 
j~~2 

(l/2) {~~{(Y~ - ~)/h~ } + 
~~

{(
~~ 

- Yj )/h n }}
~

f W (y) = (i/nh ) 
~ 

{(l/2h )K 2 {(Y , - y)/2h ) - K2 {(y - Yj )/h n }}
~

since K .( 0) = 0, I = 1, 2.

Using the c -inequality, K~ = sup I K .(u) I < ci~~ ~ 1, 2 and (5 . 17)

we get

f  IA~ (y) I d
E l  

)
(~~) -

2(K;
’/2nh )d(l + 9 ) ld  

f  (0~ + l/2y) d {f G(y) }~~
d
dy

* 2d -d l-d l-d+ ( K/nh ) (2 + l)( 1 + e~) f  
~~~~~~ 

dy . (5.2 1)

Arguments similar to those used above can be

used to prove that both of the integrals that appear in (5. 21) are

finite . This , together with the particular choice of h =

yields 
•

f  I A G(y) I~~~E I AU)(y) - A (y) ~d~ y < Q (~ -d(2I-l)/ (2I+ 1) ) .

The proof of the theorem is completed by using Lemma 2.

Q.E.D.
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This theorem completes the result s on testing “small  outliers ”

aga ins t  “large outl ie rs ” . In the next section we shall consider another

variat ion of te sts  for outliers under the e. B. approach.

6.  Unk nown Mean and Variance.

All the re sults  derived up to now have assumed p. and ~~ are

both know n. In this  section we shall relax this assumption.  The first

result  we present corresponds to the s i tu a t i r ~n given In Theore m 2 without

the assu mption that  p. and if are known.

THEOREM 6. Assume all the conditions of Theorem 2 except that p. and

are unknown and

* —2 — 2 — 2 ±
= m in {I ,p  ) ,  p = {(m2 — X — X0. )/(l — X ) 0 .

where A3 
= max{0 , A } ,

m = (I/n) 
r~~1 

XS; ~ = m1

and

— 2 = {3( m 2 -~~~) ( l  , X ) * ~~~~~~2
_ X 2 ) 2( l +\ ) 29 - l2 X (m 4 -6X 2 m 2 5X 4)}~ . (6.1)

Also let

f~(x) = (1/~~~~~~ )exp{-(x - ~) 2/2
_ 2

) ( 6 . 2 )

f ( x) (l/ \j~~~~
2X )exp{~ (x - ~) 2/2 2X } ,  ( 6 .3 )

and 

A (x) = (1 - ~ )L 0 (X ) f ~~(x) -

4 -2 1—



Then the e .B .  decision rule

(o if A (X ) > 0
t ( X ) = ~~ 

n r —

n r l.~i otherwise ,

r = 1, . . .  ,n, is a .r . a . o .  for testing H0, relati ve to G = {p,q}.

As in Theorem 2 , ( 4 .  3) and (4 .4 )  are true and by the same argument

given there we h ave that ( 3 . 4 )  is satisfied. The remaining conditions

of Theore m 1 are easily verified by using Slutzky ’s theorem and the

fact that the sample moments are consistent and such that , as n -

4 2 2 2  4
m 4 —P — 3a [ p + ( 1 - p)X ] + 6 p . 0 . [ p + ( 1- p ) X ] + p .

2 2
m 2 -P-- 0. {p + (1 - p ) X ) + p .

m 1 = X -P-i. p .. (6 . 4)

If only a- is unknown similar arguments can be used . We must

use p. instead of X and we do not need (6 .4) .

Notice that (6.1) is written with both signs (+ and -). The question of which

root to use can be answered as follows. In the expression under the square

root sig n , as n —

9(m 2 
- ~

2
)
2(l + X )

2 
- l2X(m 4 

- 6X2m 2 + 5X
4
) -F—

9a- 4 {Z X - p - ( l - p ) X  - xp - (1 - p)X 2 }2 = 9o
4

{ p + ( l - p) X ~ PX + ( 1- p ) X 2 -2 X }2

When we take the positive or negative signed term , th e two possibilities

with respect to 2 that we have as n — o° are

~~~~ a-
2 or ;2 ~~ a- (x - Xp + p/x ) .
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But

- X p  + p/X) <
2 

~ p > x/( l +

2 if p < x / ( l  +

Now , in practical applications ( I - p) would usual ly  be small and

(I - p) = 0. 1 is already considered too extreme. Box and Tta o (1968),

take the extreme value \ 100. On the other hand it seems ~e i s o nabIe

to thi nk that the larger the discrepancy between the variances (i . e.

the large r X )  the smaller we would expect (1 - p) to be. So tha t  in

g eneral we can expect p to be such that p < > ,~/(1 + x ) .  This can be

take n as an indication that the estimate of is the largest of the

two va lues obtained. This in turn means we should take the positive

root in (6.1) .

We present the following rate theorem for the si tuation where a-
2

is known and p. is unknown .

THEOREM 7. Assume the conditions of Theorem 2 except that p. is

unknown and p is defined as

* * —2 2 2 +
p = min {l , p ) ,  p = {(m2 - X - \~~ )/( l - x)a } -

= l , X is defi ned as in ( 6 . 2 )  and ( 6 . 3 )  but with ~
2 instead

of 
2 and A~ (x) = (1 - ~ )L0( X ) f ~ (x) - ~L1(l) ? 1(x) . Then ,

• 
r *(~~ , G) - r( G ) = O( n h/2 )

PROOF. From Lemma 1, with d1 = d , 3/4 < d  < 1 , and d 2 = 1, we have

r *(t W , G) - r(G) < 2  f  I AG(x) I’~~E I A~~(x) 
- ~~(x) (

dd +

2 f  E 
~~~~~~ 

- A G
(x) Idx . ( 6 .  s)
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The de f in i t i o n of ~~(x)  and 
~ G ( x) alonq with repeated use of

the c - inequal i ty  yiel J s

f E j ~~~(x )  - 
~ G

( x) l dx < J L ( a0, x ) ( l  - p ) I  f E i f ~
(x) - f

~
(x)l dx 

~

IL(a1, l)pJ f EIf 1(x) 
- f 1(x) I dx + IL (a 0, x ) J  f E I ? ~(x)( p -~~) I d x +

1L (a 1, 1)1 f  E ~f 1( x) (p  - 
~~

) Idx .

Now let

A = f  E If
~
(x) - f~(x)ldx , B = f E 1 f 1(x) 

- f1( x) I dx

= f E If~ (x)(p 
- p) I dx and Dn = f E 1 f 1(x)(p 

- )Idx

If in Bn we take the Taylor Series expansion of f1(x) about

~~, we get

f 1(x) = f 1(x) + (p. 
- ~)f ~(x , p . )  (6.  6)

where

= {df
1
(x)/ d~~}

p . = p .* = {h i (x) )
p . = p .* (x - p.*)/a-

Z (6 .7)

*and p. = p. + T,( p .  - p .) , 0 < < 1. Hence
— .~~ 2 * *f  E 1f 1(x) 

- f 1( x ) !dx  = E ( L p .  - p . 1/a- ) f I x  - p. ff 1(x,~i )dx , ( 6 . 8 )

wi th

f~~(x ,p .*) = X *~~~p . p .*~ 
~~* = I , x

Now assume p. < 1.  p. and ~ are fixed so that as x changes ,

will sh i f t  but always staying within the Interval [p . ,  p . ] ,  hence for
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a)  x < ~ p. ~~~~~~~~~~~~ and J X - ~~ J~~~ I X p . I  (6 . 9)

b) x~~~~ J x - p . I � I x p. I and IX I~~~I X p . I  (6.10)

c) p. ~~x 0 < Ix  - p.~I I p . - ~I . (6.11)

The integral  in (6 .  8) can be broken into three integrals , each one

taken over one (~f the intervals indicated in a), b) and c). The inequal i t ies

given in ( b . 9 ) - ( h . l 1 )  can be used (de Alba (1974))  in the corresponding

integrals to obtain

(1/~ ) j  I x - p.
*I(l/a~~~~)eXp{_ (Y - p.

*
)

Z
/2if

2
}dX <

p. - p .I/ a - + (p . - p .)
2

/ (a
2

N~~~) ,  (6 .12)

where is the first absolute moment of a standard normal random

variable. The same result is true if ~ > p.. In general , since E 1.i = p .,

f  E j f 1( x ) - f 1( x ) I d x  (1/a-)E{v~ Ip . - ~I + (p. - 
_

) 2
/ + - ~~I

3
/(a-

2
~~~~~) )  <

(l/~~){v
1
~~~n

h/2 
+ (,r

2
/a-)n~~~ + ( ,~ 3/~

2
~~~ )n 3/2 } = O(n V2 ) , ( 6.13)

with = pa 2 ~ ( 1 - p) Xa 2 . A similar argument can be used to prove

A = O(n V2 ).

Now in D we have , by Fubini’ s Theorem ,
n

fE I~ 1
(x)(p - p) I dx = E { I p  - ~I f~~1(x)dx } EIp  - ~I ~~EIp - p ’I , (6 .14)

where

p ’ = (m 2 
- X2 

- ~a 2 )/(1 - x ) o

2 
. (6 .15 )

It can be shown (de Alba (197 4 ))  that  EI p - p’ I < O( n I/2 ) and so

Dn = O(n 1”2 ). Here also , a s imi lar  argument can be used to prove

C O(n 1”2 ). Thus
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I E I A (x) - A G( x ) I d x  = 0(~~ V2 ) . ( ( . l6)

Thi s completes th e proof that the second term in (6.  5) is O(n 1”2 ) .

We shall now find the rate of convergence of the first term . Usin g

- ~( _X1( x )) and = ~i(X1(x)) - along with the facts

I l/a- J~~I and Ii~~(x) I ~ I l/a-~/~~I, x~ = l , X

we get

I4~ (x) - An (x) I~~~ I l/a- J2ii I
d I(l - ~1)L( a0, X ) - ~1L(a 1, X ) - ( 1 - ~) L(a 0,~~) +

~ L(a j , X ) I d
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where A0 is defi ned in an obvious manner. Then

EI~~~(x) 
- A (x) I d < A 0 E I ~ 1 

- ~~I
d

< A
0

E j P1 - 
~ 1 j d~~ ( 6 . 1 7)

Repeated use of the c~_Ifle~ UalitY gives

(1 - x ) a -z I
d

EIp !  - 1
d < ((n - l)/n Z

)
d
(x
Zd 

+ EX~~ ) +

2d
fl

_2d
( I x I d 

~~ 

E I X . I ~ + 

~~~~ 

EIX 1X.I d) . (6.18)

Let

v~ = E I X ~I
d 

<~~~~, i = 1,... , n . (6 .19)

Substitution of (6.19) in (6.18) and using the Schwarz inequality, together

with (6.17), yields

EIAW(x) - A (x) 1
d <A

0 10.
2
(1 - ) I~

d U( - 1/ 
2 ) d ( 2d 

+ 
~2d~ 

+

2
d _2d

( 1 1
d
( - l)v~ + (n - l)v

~ d I } . ( 6 . 2 0 )
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Further, if d > 1/2,

f  I A G(x) I~~~E I A ~~
(x) - A (x) I dd x < A ~(r zd + v zd

){ ( n - 1)/ ) d~~ d

A~2d ( T dv~ 1 
~~~~~~ 

- l )/n )n ~~
2d = O(n (2d fl

) , (6 .2 1)

where A~ is a constant and T
a 

= f  I x I a f X/(l d) (x )d x <~~~~~. Substitution

of (6.16) and (6 .  21) in ( 6 . 5 )  yields

r*(t~
l)
, G) - r(G) = O(n V2 ) -

From Lem ma 2 the proof is complete.

Q . E . D .

7. Concluding Remarks.

In thi s paper we have presented a first approach via e. B. methods

to the problem of detec ting outliers . Other altern a tives are s urel y

possible. A first  one would be to use a di fferent model , perh aps consider-

ing as outliers those observations which have a shifted mean rather than

a larger variance. J~n interesting problem would be to determine a

criterion to estimate the value of the Increase in variance (x) for the

spurious observations . Other articles on some of these extensions are

being prepared.
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